![]() | |
|
A black hole is a region of space whose attractive
gravitational force is so intense that no matter, light, or communication
of any kind can escape. A black hole would thus appear black from the
outside. (However, gas around a black hole can be very bright.) It is
believed that black holes form from the collapse of stars. As long as they
are emitting heat and light into space, stars are able to support
themselves against their own inward gravity with the outward pressure
generated by heat from nuclear reactions in their deep interiors. Every
star, however, must eventually exhaust its nuclear fuel. When it does so,
its unbalanced self gravitational attraction causes it to collapse.
According to theory, if a burned- out star has a mass larger than about
three times the mass of our sun, no amount of additional pressure can
stave off total gravitational collapse. The star collapses to form a black
hole For a non rotating collapsed star, the size of the resulting black
hole is proportional to the mass of the parent star; a black hole with a
mass three times that of our sun would have a diameter of about 10 miles.
The possibility that stars could collapse to form black holes was first theoretically "discovered" in l939 by J. Robert Oppenheimer and H. Snyder, who were manipulating the equations of Einstein's General Relativity. The first black hole believed to be discovered in the physical world, as opposed to the mathematical world of pencil and paper, was Cygnus X-1, about 7000 light years from earth. (A light year, the distance light travels in a year, is about six trillion miles.) Cygnus X-1 was found in 1970. Since then, a dozen excellent black hole candidates have been identified. Many astronomers and astrophysicists believe that massive black holes, with sizes up to ten million times that of our sun, inhabit the centers of energetic galaxies and quasars and are responsible for their enormous energy release. Ironically, Einstein himself did not believe in the existence of black holes, even though they were predicted by his theory.
According to the Big Bang theory, the universe may keep expanding
forever, if its inward gravity is not sufficiently strong to
counterbalance the outward motion of galaxies, or it may reach a maximum
point of expansion and then start collapsing, growing denser and denser,
gradually disrupting galaxies, stars, planets, people, and eventually even
individual atoms. Which of these two fates awaits our universe can be
determined by measuring the density of matter versus the rate of
expansion. General relativity may be the biggest leap of the scientific imagination in history. Unlike many previous scientific breakthroughs, such as the principle of natural selection, or the discovery of the physical existence of atoms, General Relativity had little foundation upon the theories or experiments of the time. No one except Einstein was thinking of gravity as equivalent to acceleration, as a geometrical phenomenon, as a bending of time and space. Although it is impossible to know, many physicists believe that without Einstein, it could have been another few decades or more before another physicist worked out the concepts and mathematics of General Relativity.
Alan Lightman is professor of science and writing,
and senior lecturer in physics, at MIT. His latest books are
Einstein's Dreams, Good Benito, and Dance for
Two.
|